
Lecture 7: Logistic Regression Classifier

Xijia Liu∗

2023, Autumn

In this lecture, we will learn about a very important classifier in machine learning, the logistic regression
classifier. First, we will discuss intuitively how classification can be performed using a linear regression model
and point out its critical weakness. Then, we will introduce logistic regression to address this weakness,
discussing its model construction and how to use it as a classifier. Finally, we will discuss the training of the
logistic regression model. By understanding its loss function, we will easily grasp how to use regularization
methods in logistic regression.

1 Regression Model for Classification

“Regression model for classification” sounds a bit strange. Do these two types of problems have something
in common? How can we use a linear regression model to build a classifier?

1.1 Motivation

As we discussed earlier, if there is only one feature variable, how can we perform classification? Let’s revisit
this simple problem to gain some insights. Based on our previous discussion, the key to this problem lies in
determining the classification boundary, that is, finding a method to identify the cutoff. For example, when
discussing Fisher’s idea, we mentioned that for two normal distributions with equal variance, the optimal
classification boundary is the midpoint between the two population means. Now, let’s approach this from a
different perspective.

The difficulty of this problem lies in the fact that different feature variables will have different criteria. For
example, we might use body size to distinguish between ethnic groups, flower shape measurements to classify
flower species, or image-extracted features to diagnose cases. However, there is no universal cutoff to serve
as a standard for all of them. Therefore, we need to transform any variable onto a dimension that has a
universal cutoff. So, which dimension is that magical dimension, and what should we do to find it?

We can use the target variable to find the magical dimension to perform the transformation. First, we encode
the target variable to make the categorical variable numerical—for example, assigning 1 to the positive group
and 0 to the negative group. Then, we estimate a linear regression model for the target variable based on
the feature variables. Through the regression model, all observation points are projected onto that magical
dimension, where 0.5 serves as the universal cutoff. See the demo on my space.

Remark: You might find this problem a bit tedious and think, “Why not just pick a random point in the
region between the two populations?” However, note that this approach is overly subjective. What we need
is a universal method to calculate this cutoff, such as Fisher’s idea or the method discussed here. In the
future, we will introduce a third approach. You can also think about whether you have any good ideas.

∗Department of Statistics, Umeå University, xijia.liu@umu.se

1

mailto:xijia.liu@umu.se

1.2 Classifier based on Linear Regression Model

This idea can be naturally extended to the case of multiple feature variables. Suppose we have a set
of feature variables, X1, X2, . . . , Xp, and the encoded target variable Y . The trained multivariate linear
regression model is

Y = w0 + w1X1 + w2X2 + · · · + wpXp

With this model, the p feature variable values of any observation are recalculated and used for the final
decision. We call the fitted Y , w0 + w1X1 + w2X2 + · · · + wpXp, Score. So, if Score > 0.5 then it will be
assigned as positive, and if Score < 0.5 then it will be assigned as negative. So the decision boundary will
be Score = 0.5, i.e.

w0 + w1X1 + w2X2 + · · · + wpXp = 0.5

Therefore, the classifier based on linear regression model is a linear decision boundary, the regression coeffi-
cients are the weights and 0.5 − w0 is the cutoff, or bias term. See the demo on my space.

1.3 Main Issues

In fact, linear regression models have many advantages. For example, the optimal solution under the MSE
loss function has an analytical solution, meaning we have a formula to calculate the parameters of the re-
gression model, which makes linear regression very efficient. However, in machine learning, it is almost never
used as a classifier. Why is that? The main reason is that it has high requirements for the data distribution,
and any significant outliers will affect its performance. For example, in the image below: on LHS is the clas-
sification boundary determined by the linear regression model. It looks fine with no issues. However, if we
add some outliers to the red group, see the RHS, the decision boundary determined by the linear regression
model is severely affected. Even with this simple problem, the linear regression model can make mistakes.

2

So, how can we solve this problem? In the next section, we will answer these questions and introduce the
important classifier in machine learning: logistic regression.

Quiz: Can you use the basic statistical knowledge you’ve learned to explain why a classifier based on a
linear regression model is sensitive to outliers?

2 Logistic Regression Classifier

Do you know about logistic regression? It is an important tool in statistical analysis. In the future, I will write
a note introducing it from a statistical perspective. Similarly, it is also one of the most important classifiers
in machine learning. For now, let’s introduce logistic regression from a machine learning perspective.

2.1 Exploration

Let’s go back to our previous discussion: what is the main issue with using linear regression models for
classification problems? First, we need to clarify one point: what is the essence of the linear regression
model? Recall the discussion of maximum likelihood estimation of linear regression model. The essence of
the linear regression model is to predict the expected value of the target variable using a linear combination
of the feature variables, i.e.

E(y|x) = w0 + w1x1 + w2x2 + · · · + wpxp

This is quite normal for a continuous target variable. However, when we try to extend this model to
classification problems, we encounter new issues.

Essentially, we are trying to model the expected value of target variable as the weighted sum of feature
variables, when we apply linear regression model to a classification problem. However, in classification

3

problems, the target variable is a categorical variable. For categorical variables, the assumption of a normal
distribution is completely unreasonable. We need to use discrete distributions to characterize the distribution
of these variables, for example, using binary distribution for a binary classification problem, i.e. y ∼ Ber(π),

y =
{

1 Positive case
0 Negative case

What is the expected value of a binary distributed random variable? It is the probability of y = 1, i.e. E(y) =
π. So, we are using the following equation

π|x = E(y|x) = w0 + w1x1 + w2x2 + · · · + wpxp

If we analyze the range of values on both sides of the equation, it is not difficult to identify the critical
flaw in using linear regression to handle classification problems. The left side of the equation represents a
probability value, with a range of [0, 1], while the right side can take any real number. Clearly, fitting a
probability with an arbitrary real number is unreasonable and this is where the problem lies.

2.2 Model Construction

To address the issue mentioned above, mathematicians proposed an idea: using a function to transform
values that span the entire real number axis into a fraction. This transformation function is the well-known
logistic function,

ϕ(t) = 1
1 + e−t

The graph of the logistic function is shown in the figure below. We can see that through its transformation,
the output for any input x lies between the two red dashed lines, meaning it is a fraction.

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic function

x

1/
(1

+
ex

p(
−

x)
)

4

With the help of the logistic function, we can start building our logistic regression model.

For a binary classification problem, we assume that the target variable follows a binary distribution, where
the probability of a positive case is calculated as the logistic transformed weighted sum of the feature variables
plus a constant. In a formal mathematical language, logistic regression model presents a probability model,
y ∼ Ber (π(x; w)), where

π(x; w) = ϕ(w0 + w1x1 + w2x2 + · · · + wpxp) = 1
1 + e−(w0+w1x1+w2x2+···+wpxp)

As can be seen from the above model, the logistic regression model essentially provides us with a mechanism
for calculating the posterior probability of the target variable, i.e.

Pr (Y = 1|x) = 1
1 + e−(w0+w1x1+w2x2+···+wpxp)

In other words, once we have obtained all the parameters w, we can evaluate the posterior probability using
the values of the feature variables. If you still remember the classification rule of the GDA classifier,

ŷ = arg max
y

Pr(y|x)

then it is natural that the logistic regression model can be used as a classifier. Simply speaking, if the
posterior probability evaluated by logistic regression, Pr (Y = 1|xnew) > 0.5, then we should classify this
new case as positive, otherwise, negative group.

2.3 Logistic Regression in R

In R, we can apply glm function to estimate logistic regression model, and the usage is very simple.

usage of function `glm` for estiamte logistic regression
model = glm(MODEL_EXPRESSION, family = binomial(), DATA)

Similar to using lm to estimate linear regression, we first need to specify the model expression, and the rules
are the same. However, the difference is that we need to verify another argument, family, as Binomial.
This argument mainly determines the type of the target variable y, that is, it specifies its distribution.
“Binomial” means that the target variable follows a binomial distribution, which implies that y has a binary
distribution. More demonstration by examples will be presented in the next subsection.

Quiz: Can you guess what kind of model will be returned if you specify family as gaussian?

2.4 Decision Boundary

In the field of statistics, logistic regression is typically considered a type of generalized linear regression model.
Generalized linear models (GLMs) form a large family of models, which includes common distributions for
the response variable, such as Poisson regression, multinomial regression, beta regression, and so on. Logistic
regression is also often referred to as a nonlinear regression model because, in the end, it projects the feature
variables onto a nonlinear surface, as shown in the figure on my space.

Question: If logistic regression is considered a nonlinear statistical model, is it a nonlinear classifier?

2.4.1 R example:

Let’s address the previous example with outliers. To solve this problem, we can kill three birds with one
stone: learn an R example, validate the robustness of logistic regression, and finally, experimentally obtain
the answer to the above question.

I show you the dataset for the problem we discussed before and visualize it in a scatter plot.

5

head(dat)

x1 x2 y
1 1.419 2.280 1
2 0.553 3.838 1
3 1.704 2.422 1
4 1.331 3.096 1
5 1.660 1.397 1
6 2.434 1.712 1

color_obs = ifelse(dat$y==1, "blue", "red")
par(mar = rep(1,4))
plot(dat$x1, dat$x2, col = color_obs, pch = 20,

cex = 2, axes = F, xlab="", ylab = "")

Let’s first demonstrate how to obtain the classification boundary for the linear regression model. By the
way, the answer to the previous quiz is the linear regression model. That is, if we set the family argument
to Gaussian, we will get a linear regression model. In other words, its output is the same as the output from
the lm function. Now, let’s use it to calculate the model parameters.

m_linReg = glm(y~., data = dat, family = "gaussian")
summary(m_linReg)

##

6

Call:
glm(formula = y ~ ., family = "gaussian", data = dat)
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.08317 0.06386 16.962 < 2e-16 ***
x1 -0.03156 0.01510 -2.091 0.0392 *
x2 -0.10966 0.02241 -4.894 3.94e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
(Dispersion parameter for gaussian family taken to be 0.1108737)
##
Null deviance: 25.000 on 99 degrees of freedom
Residual deviance: 10.755 on 97 degrees of freedom
AIC: 68.805
##
Number of Fisher Scoring iterations: 2

Next, let’s render the classification boundary of the classifier based on this model. Similar to how we rendered
the classification boundary for k-NN previously, we will first generate a grid for the 2D feature space. Then,
we will use our model to classify each grid point and present the decision boundary.

x1 = seq(-1,16,0.1)
x2 = seq(0,14,0.1)
d = expand.grid(x1 = x1, x2 = x2)
class(d)

[1] "data.frame"

scores = predict(m_linReg, d)
color_test = ifelse(scores > 0.5, "#D6E8FF", "#FFD6D6")

par(mar = rep(1,4))
plot(dat$x1, dat$x2, col = color_obs, pch = 20,

cex = 2, axes = F, xlab="", ylab = "")
points(d$x1, d$x2, col = color_test, pch = 20, cex = 0.5)
points(dat$x1, dat$x2, col = color_obs, pch = 20, cex = 2)

7

As we observed earlier, the classifier based on the linear regression model is very sensitive to outliers. Even
in such a simple classification problem, it makes errors in certain areas. Now, let’s take a look at the
performance of the classifier based on the logistic regression model.

m_LogReg = glm(y~., data = dat, family = binomial())

res_pred = predict(m_LogReg, d, type = "response")
range(res_pred)

[1] 2.220446e-16 1.000000e+00

Here, we use the predict function to predict the label for each grid point. Note that in the function above,
we set the type argument to ‘response’, so we will obtain the posterior probability for each grid point based
on its coordinates. Then, we can classify the points using the standard cutoff of 0.5. Finally, we use this
grid to present the classification boundary of the classifier based on the logistic regression model.

color_test = ifelse(res_pred > 0.5, "#D6E8FF", "#FFD6D6")

par(mar = rep(1,4))
plot(dat$x1, dat$x2, col = color_obs, pch = 20,

cex = 2, axes = F, xlab="", ylab = "")
points(d$x1, d$x2, col = color_test, pch = 20, cex = 0.5)
points(dat$x1, dat$x2, col = color_obs, pch = 20, cex = 2)

8

As we can see, using logistic regression as a classifier allows us to correct the impact of outliers. Additionally,
we can observe that the classification boundary of the logistic regression classifier is also a straight line,
meaning it is a linear classifier. In fact, this conclusion is not difficult to reach. From the principle of the
classifier, the classification boundary of the logistic regression classifier is:

Pr(Y = 1|x) = ϕ(scores) = 1
1 + e−(w0+w1X1+···+wpXp) = 1

2

If we simplify this formula, we can derive the classification boundary of the logistic regression classifier

w0 + w1X1 + · · · + wpXp = 0

So, the classifier based on logistic regression is a linear classifier.

3 Cross-Entropy Loss and Penalized Logistic Regression

3.1 Cross-entropy Loss and Likelihood function

Above, we conceptually explained the logistic regression model and its classifier and demonstrated its im-
plementation in R. Next, we will address a more theoretical question: how to train our model, or in other
words, how to estimate the model parameters. This question can be approached from both machine learning
and statistical modeling perspectives, yielding consistent conclusions.

Strategy: From the machine learning perspective, it is relatively easy to formulate the optimization problem
for the logistic regression model. However, different from MSE loss, to fully understand the cross-entropy loss
function, we would need to learn some additional concepts from information theory. Since we have already

9

studied likelihood theory, deriving the objective function (i.e., the likelihood function) from this perspective is
comparatively straightforward. Therefore, to simplify the learning process, I will introduce the cross-entropy
loss from the machine learning perspective and then interpret it through the lens of likelihood theory. In
the near future, you can revisit this concept from the information theory perspective when you study neural
networks.

3.1.1 Cross-entropy Loss

Let us recall the brute-force method we used when training a regression model. First, we define a loss
function, specifically the MSE loss, which we use to evaluate the model’s performance.

Figure 1: In this formula: LHS: It represents the relationship between the model’s loss and its parameters,
i.e., the loss function. Its value is determined by two factors: the model parameters and the data fed into the
model. Since the data is fixed and unchanging, the quality of the model depends on the choice of parameters.
RHS: It specifies how the loss is calculated. Since the model f is a regression model, its loss can be directly
measured by the prediction error, namely the Mean Squared Error (MSE).

After defining the loss function, we can select the optimal model based on the performance corresponding
to different sets of model parameters. In the absence of an efficient algorithm, brute-force computation is
the simplest solution. However, for a well-defined optimization problem, smart mathematicians would never
resort to brute-force computation so easily. This has led to the development of various algorithms for training
models, e.g. gradient descent algorithm.

Alright, let’s return to the logistic regression model. How do we determine its model parameters? Similarly,
we can design a loss function for the model and formulate it as an optimization problem. However, for
a classification problem, we cannot directly calculate the model error and take the average, as we do in
regression problems. Instead, the most commonly used loss function for classification problems is the cross-
entropy loss:

L
(

w; {yi, xi}N
i=1

)
= − 1

N

N∑
i=1

{yi log(π(xi, w)) + (1 − yi) log(1 − π(xi, w))}

Similar to training regression problems, the model parameters of logistic regression can be obtained by
optimizing the cross-entropy loss, i.e.,

ŵ = arg max
w

L(w; {yi, xi}N
i=1)

Note: The cross-entropy loss is undeniably famous. You will encounter it again when you study neural
network models and deep learning in the future.

Unlike regression problems, optimizing the cross-entropy loss does not have an analytical solution. This
means that we must use numerical algorithms to find the optimal solution. Typically, we use second-
order optimization algorithms to estimate the parameters of logistic regression, such as the Newton-Raphson

10

algorithm you practiced in Lab 1. In broader fields, like optimizing deep neural network models, the gradient
descent algorithm is commonly used. We will only touch on this briefly here, and I will discuss it in more
detail in the future.

Think: Why can’t we design the loss function using prediction error like in regression problems? What
would happen if we did?

3.1.2 Maximum Likelihood Estimation

Cross-entropy loss is not as easy to understand as MSE loss; you need to learn some information theory to
fully grasp it. But don’t worry, here we will approach it from the perspective of statistical theory, specifically
from the concept of maximum likelihood estimation (MLE), which you have already studied. In the end,
you will find that the likelihood function of MLE and the cross-entropy loss are equivalent.

Suppose we have a set of training observations, {yi, xi}N
i=1. The distribution of the target variable is Binary

distribution, i.e.
Pr (yi, π(xi, w)) = π(xi, w)yi(1 − π(xi, w))1−yi

where yi = 1 or 0. Since we have independent observations, the joint likelihood of the training sample is

L
(

w; ; {yi, xi}N
i=1

)
=

n∏
i=1

π(xi, w)yi(1 − π(xi, w))1−yi

The log-likelihood function is

ℓ
(

w; {yi, xi}N
i=1

)
=

N∑
i=1

{yi log(π(xi, w)) + (1 − yi) log(1 − π(xi, w))}

The MLE of w is
ŵMLE = arg max

w
ℓ

(
w; {yi, xi}N

i=1

)
Now we can compare the likelihood function and the cross-entropy loss function. Upon comparison, you will
find that they differ only by a negative sign. Therefore, maximizing the likelihood function is equivalent to
minimizing the loss function; they are interchangeable. So, if you want to understand cross-entropy loss,
start by approaching it from the perspective of likelihood analysis.

3.2 Penalized Logistic Regression

In the previous lecture, we discussed the shrinkage and sparse versions of the regression model. Through
these, we can both avoid the risk of overfitting and indirectly obtain feature selection results. For classification
problems, we have similar tools available, that is penalized logistic regression.

Let’s first recall the idea of penalized regression. We define a set of candidate models by adding the calculation
of the budget for the model parameter values, i.e.,

Candidate Models = Full Model + Budget(w).

With the general form of all candidate models, the penalized regression problem can be formulated as

min
w

{
Lmse

(
w; {yi, xi}N

i=1

)
+ λBudget(w)

}
where the mse loss is just the sum squared residuals, and the budget term can be L1 norm, i.e. LASSO, or
L2 norm, i.e. ridge regression.

Now, let’s return to the logistic regression model. The clever among you might have already realized that
the difference between penalized logistic regression and the previous penalized regression is simply the choice

11

of the loss function. If we replace the MSE loss in the above formula with the cross-entropy loss, we obtain
the optimization problem for penalized logistic regression, and the optimal solution is the penalized logistic
regression model parameters.

Similarly, if we choose the L2 norm, we will get a shrinkage solution, whereas the L1 norm will provide us
with a sparse solution and serve as an important tool for feature selection in classification problems. In
addition, we will encounter many variations of penalty terms, such as the Elastic net penalty,

α ×
p∑

j=1
|wj | + (1 − α) ×

p∑
j=1

w2
j

where α is an extra hyper-parameter taking value in [0, 1]. From the above formula, it is easy to see that the
calculation of the parameter value budget in elastic net is intermediate between ridge regression and LASSO.
If the parameter α is set to 1, the elastic net degenerates into the LASSO penalty. Conversely, if α is set to
0, we get the L2 penalty, which corresponds to ridge regression. When α takes any value between 0 and 1,
we obtain the elastic net. In other words, the elastic net is a convex combination of the L1 penalty and the
L2 penalty. This setup makes the corresponding candidate models more flexible. Of course, the trade-off is
that we need to consider an additional hyperparameter. Alright, let’s stop here for now. We will explain the
implementation of penalized logistic regression in more detail in the upcoming labs.

12

	Regression Model for Classification
	Motivation
	Classifier based on Linear Regression Model
	Main Issues

	Logistic Regression Classifier
	Exploration
	Model Construction
	Logistic Regression in R
	Decision Boundary
	R example:

	Cross-Entropy Loss and Penalized Logistic Regression
	Cross-entropy Loss and Likelihood function
	Cross-entropy Loss
	Maximum Likelihood Estimation

	Penalized Logistic Regression

