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In this lecture, we discuss regression problems. First, we review the training methods of linear regression
models from different perspectives. Then, a basic nonlinear extension idea is introduced, feature mapping,
and use it to introduce the first nonlinear regression model, polynomial regression. Afterward, we understand
polynomial regression from the perspective of basis functions, and then introduce another commonly used
nonlinear model, spline regression. At the end of this lecture, we introduce a new concept, the overfitting
problem. It is a core challenge in machine learning from the training perspective, and we focus on it in the
next lecture.

1 Linear Regression Model

Unlike classification problems, the target variable in regression is continuous, but it inherits the basic idea
of classification problems, which is to predict the target variable using a weighted combination of feature
variables, i.e.

y = w0 + w1x1 + . . . wpxp + ϵ

where ϵ is a error term. The error term contains many things. It could be measurement errors, or random
noise, or all the variations that can not be explained by all the feature variables. For the latest case, it also
means we need more feature variables for a better prediction of the target variable.

Obviously, we have to apply some methods (algorithm) to learn the model, i.e. estimate the coefficients
w0, w1, . . . , wp from a data set. Here, we mainly discuss two methods, least square methods and maximum
likelihood method. Eventually, the two methods are equivalent for a regression problem, however, it is still
necessary to explain maximum likelihood method for understanding logistic regression in lecture 7.

1.1 Least Square Method

Least Square method was proposed by the famous mathematician Gauss. He applied this method for data
analysis to accurately predict the time of the second appearance of the asteroid, Ceres. His idea is quite
simple: to use data to find the optimal line, represented by two coefficients, in order to minimize prediction
errors, see the plot below.

Suppose that we have a set of paired observations, (y1, x1), . . . , (yn, xn), then the mathematical formulation
is

ŵ0, ŵ1 = arg min
w0,w1

n∑
i=1

(yi − ŷi)2

where ŷi = w0 + w1xi.

The solution of this optimization problem is ŵ1 =
∑N

i=1
(xi−x)(yi−y)∑N

i=1
(xi−x)2

, and ŵ0 = y − ŵ1x
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Figure 1: Simple Linear Regression Model: Red circles are observations, Black dashline is the regression
model, Blue Dots on the dash line are prediction, the lenght of segment in purple is the prediction error.

1.2 Matrix Form (NE)

When we consider multiple feature variables in a linear regression model, the above calculation formula
becomes somewhat cumbersome and inefficient. To compute all the regression coefficients more effectively,
we typically need to consider the matrix form of the model. By expressing the linear regression model in
matrix form, we can simplify the computation and make it more efficient. The model can be written as:

y = Xw + ϵ

where: - y is the vector of observed values (target variable), y = (y1, . . . , yn)⊤, - X is the design matrix,
which contains the feature variables (including a column of ones for the intercept), i.e.

X =

1 x1,1 · · · x1,p

...
... . . . ...

1 xn,1 · · · xn,p


- w is the vector of regression coefficients, w = (w0, w1, . . . , wp)⊤ - ϵ is the vector of errors, ϵ = (ϵ1, . . . , ϵn)⊤.
To estimate the regression coefficients , we use the least squares method, which minimizes the sum of squared
errors. The solution to this optimization problem is:

ŵ = (X⊤X)−1X⊤y

This formula provides an efficient way to calculate the coefficients for a linear regression model with multiple
features. Using matrix operations not only simplifies the calculations but also allows for faster computation,
especially when dealing with large data sets or numerous features. Thus, the matrix form of the model
allows for a more streamlined approach to regression analysis, making it easier to implement and compute
the necessary coefficients, particularly when working with multiple variables.

1.3 Maximum Likelihood Method

Different from least square method, next, we are going to reexamine the regression model from the perspective
of probability models. To do so, we assume the error term ϵ is normally distributed, ϵ ∼ N (0, σ2). Based on
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this assumption, the target variable is normally distributed conditional on feature variables. Therefore, we
essentially predict the expected value of the target variable conditional on X1, . . . , Xp as a linear model, i.e.

Figure 2: Regression Model: the expected value of target variable is a linear function of X1 and X2

E(Y |X1, . . . , Xp) = w0 + w1X1 + w2X2 + · · · + wpXp

Based on the normality assumption, another estimation method, MLE, for coefficients can be discussed.
MLE of regression model: Under the normality assumption, we have yi ∼ N (w0 + w1x1, σ2). If you
remember the secrete message behind the normal distribution, the likelihood of each observation, yi, is
inversely proportionally to the distance to the expected value, i.e.

f(yi|w0, w1, σ2) ∝ −(yi − (w0 + w1x1))2

Therefore the likelihood function of the sample {yi, xi}n
i=1 is

log
(
L(w0, w1, σ2|(yi, xi))

)
∝ −

n∑
i=1

(yi − (w0 + w1x1))2

Notice that, on the LHS, it is sum square of residual. Therefore, minimize sum square of residuals is
equivalent to maximize the log likelihood function. In other words, the two methods are equivalent.

1.4 Model Evaluation

Unlike classification problems, model evaluation for regression problems is quite straightforward. From the
purpose of regression, our ultimate goal is to use feature variables to estimate a continuous target variable.
A good regression model naturally minimizes prediction error. Therefore, we typically use the mean squared
error (MSE) of the model predictions for evaluation. That is

MSE = 1
N

N∑
i=1

(yi − ŷi)2

where ŷi is the prediction of the ith case, i.e. ŵ0 + ŵ1xi,1 + · · · + ŵpxi,p, and therefore yi − ŷi is the
prediction error of the ith case. To gain a more intuitive understanding, people often use RMSE (Root Mean
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Squared Error), i.e. RMSE =
√

MSE. Sometimes, people also use Mean Absolute Error (MAE) to evaluate
a regression model.

MAE = 1
N

N∑
i=1

|yi − ŷi|

For all metrics, lower value indicates better model performance.

Quiz: Do you know why we don’t use the average errors, i.e. 1
N

∑N
i=1 (yi − ŷi) to evaluate a regression

model?

Tips: The simplest regression model is y = w0 + ϵ and the estimation is ŵ0 = ȳ, i.e. ŷ = ȳ.

1.5 Loss function

The attentive among you may have noticed that the objective function of the least squares method in
regression problems is the same as the model evaluation metric, MSE. From another perspective, we can
understand the estimation of regression models as finding a set of regression coefficients that minimize the
MSE. In machine learning, estimating regression coefficients is framed as an optimization problem, where
MSE is interpreted as the objective function of this optimization problem, also referred to as the model’s
loss function. For a regression problem, it is called MSE loss:

L = 1
N

N∑
i=1

(yi − ŷi)2

For different problem, we could have different loss functions, for example, Huber loss, cross entropy loss,
hinge loss. We will explore this further in the lab exercises. This concept, connecting to Maximum Likelihood
Estimation, will reappear and be discussed again in the context of logistic regression models.

2 5.2 Nonlinear Regression Models

So far, we have studied two linear models, however, it is by no means enough to solve the problems in reality.
For example, the plot below displays a classification problem, and clearly, we cannot find a suitable linear
classifier. In other words, we cannot identify a straight line that can divide this 2D feature space in such
a way that the two classes of sample points are located on opposite sides of the line. At the same time,
through data visualization, we can roughly observe that the boundary between the two classes is an ellipse.
Therefore, to address this problem, we must extend our linear model to find a solution.

2.1 5.2.1 Basic ideas of Non-linear Extension

Nonlinear models are not the focus of our course, however, here we can explore the basic approach to finding
nonlinear models, that is feature mapping. Feature mapping involves the basic idea of introducing new
variables by transforming the original feature variables with functions. This expands the original feature
space, allowing the exploration of potential linear solutions within the augmented feature space. Let’s start
with the toy example of classification problem above.

In the classification problem, we can consider three new variables
(
h1 = x2

1, h2 =
√

2x1x2, h3 = x2
2
)

instead
of the two original variables x1, x2. The new data set is visualized in the following 3D plot.

If you rotate the 3D scatter plot above, you may notice that the same set of observed cases becomes linearly
separable in the new feature space, see the LHS of plot below. For example, we can train an LDA classifier
using three new feature variables, (h1, h2, h3). The decision boundary of this classifier would correspond to
the gray plane in the 3D space. By building the new feature space, the previously non-linearly separable
data points may now become linearly separable, allowing the LDA classifier to effectively separate the two
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Figure 3: Classification Toy Example

Figure 4: Augmented Feature Space
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Figure 5: Augmented Feature Space

classes. Also, if we change the direction of our view, the linear model in the augmented feature space is
eventually a nonlinear model in the original space, see the LHS of the plots below.

We can refer to this idea as the feature mapping idea. In simple terms, we need to find an appropriate new
space, which we call the augmented feature space, and train our linear model within it. This augmented
feature space is entirely determined by a transformation function, ϕ(x) : p-D space → q-D space which we
refer to as feature mappings.

This concept plays a significant role in machine learning, and almost all advanced nonlinear models are based
on this idea. For example:

• Before deep learning dominated AI, the Support Vector Machine (SVM) applied this idea
indirectly through the kernel function. The kernel allows the SVM to operate in a higher-dimensional
space without explicitly computing the coordinates in that space.

• In the world of ensemble methods, which dominate structured data tasks, each single model can
be seen as a form of feature mapping.

• In the foundation deep learning model, the neural network, the chain of transformations through
neurons can also be seen as a feature transformation.

This idea of transforming data into a higher-dimensional space (whether directly or indirectly) enables models
to handle complex, nonlinear relationships that would otherwise be difficult to capture in the original space.

2.2 5.2.2 Polynomial Regression Model

In this section, we will introduce a nonlinear regression model using the feature mapping idea, specifically
focusing on polynomial regression. Let’s begin by looking at a simple example.

In this example, we are dealing with a nonlinear regression problem, where the relationship between the
feature variable and the target variable is clearly nonlinear. A linear model would not provide satisfactory
results because it assumes a straight-line relationship between the features and the target. As you can see, the
blue line in the plot, i.e. the simple linear model has totally unacceptable performance on the whole domain.
However, by using the feature mapping idea, we can transform the feature space into a higher-dimensional
space, where the relationship becomes linear, making it possible to apply linear regression successfully. To
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Figure 6: Regression Toy Example

do so, we introduce the augmented feature space by the feature mapping ϕ(x) = (x, x2), i.e. a mapping from
1D to 2D, see the 3D scatter plot below.
You can see that all the points stand on a plane in the augmented space which means that we can find a
linear model, i.e.

y = w0 + w1x + w2x2,

to solve the problem.
Remark: I believe you can see that the choice of feature mapping, ϕ(), or basis functions, is extremely
important. If we choose an inappropriate set of feature mappings, we may end up with very poor results.
As shown in the figure below, we apply ϕ(x) = (x, x5) to obtain the augmented feature space, then we
eventually switch to another nonlinear problem. In other words, we can’t find a plane in the new space such
that all the sample points roughly all stand on it. So, we naturally have the following question and we will
answer it in the next lecture.
Question: How to choose an appropriate feature mapping?
From another perspective, essentially, our idea in solving the above problem is to use polynomial functions
to represent a nonlinear curve and then fit the data with this function. We refer to this regression model as
polynomial regression model. The generic form of p-th order polynomial regression is

y = w0 + w1x + w2x2 + · · · + wpxp + ϵ

2.3 5.2.3 More Options for Basis functions

Basis functions are an essential concept in regression modeling, helping us to represent more complex
relationships between the features and the target variable. In addition to polynomial basis functions, which
we discussed earlier, there are other types of basis functions, such as spline basis functions. They are a set
of piecewise polynomial functions used to model non-linear relationships. They are often preferred because
they can offer a good balance between flexibility and smoothness. Cubic splines, for example, divide the
data range into intervals and fit a cubic polynomial to each interval. The key advantage of splines is that
they ensure continuity and smooth derivatives at the boundaries between these intervals, preventing abrupt
changes in the model’s behavior. For spline basis, you are recommended to read the textbook 7.2 to 7.4, and
we will also study it through exercises in the Lab.
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Figure 7: Augmented Feature Space

Figure 8: Augmented Feature Space
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3 5.3 Over Fitting Problems

With the help of feature mapping or basis functions, it seems like we can achieve anything. It appears that
as long as we continuously expand our feature space through feature mapping, we can always find a perfect
linear model in a vast augmented feature space to solve the problem. But is it really that simple? Let’s take
a look at the following example.

3.1 5.3.1 Motivating Examples

x

y.
n

Here we have a set of data (blue triangles), and we want to use the values of the horizontal coordinate X to
predict the vertical coordinate Y . There are two candidate models.

• Red model: 2nd-degree polynomial regression, which performs well enough, but makes some errors on
the three points on the right side.

• Orange model: 4th-degree polynomial regression, which performs perfectly because it passes exactly
through every observation point, meaning it makes no errors at all.

So, the question is, which model do you think is better?

You might like the orange model because it is “perfect.” Indeed, people often pursue perfection, but behind
perfection often lies a trap. Let me tell you the truth. As shown in the figure below, all the observation
points are generated by the light blue dashed line plus a normal noise term. Now, let’s generate another
observation point, the green triangle. At this point, the red model still performs well, but the prediction of
the perfect orange model seems rather absurd.
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3.2 5.3.2 Over Fitting

Let’s analyze this phenomenon. First, we need to weigh the pros and cons from two aspects, i.e. considering
both the performance on the training samples and the testing samples. Therefore, I summarize the analysis
of this phenomenon in the table below.

Orange (4th order) Red (2nd order)
Training set Perfect Good enough
Testing set Poor Good
Number of
coefficients

5 3

Complexity Complex Simple

Training Set Performance

• The orange model perfectly fits the training data, capturing every fluctuation in the observations.
This is often seen as an indicator of a model that is too complex, as it adjusts to every detail in the
data, including noise or outliers.

• On the other hand, the red model provides a “good enough” fit. It captures the overall trend of the
data without fitting every minor variation, resulting in a simpler and more generalizable model.

Performance on testing set

• When we introduce new observations (those not included in the training set), the orange model’s
performance drops significantly. Despite its “perfect” fit on the training data, it fails to generalize well
to unseen data, indicating that it has overfitted the training set. Overfitting occurs when a model
learns not only the true underlying pattern but also random fluctuations or noise in the training data.
As a result, the model performs poorly on new, real-world data.

• Conversely, the red model, with its simpler structure, generalizes better to new data points. It
performs adequately on the training data and maintains reasonable performance on new observations,
as it avoids overfitting by not capturing unnecessary complexity.
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This phenomenon is called the overfitting problem. Simply put, if a model performs “perfectly” on
the training samples but fails to generalize to new observations, it means we cannot apply the model for
prediction, or in other words, we cannot extend the model to other observations.

Consequences of Overfitting:

• The model becomes overly sensitive to small variations in the training data, which doesn’t reflect the
true distribution of data in the population.

• It fails to make accurate predictions when new data points are introduced, making it less useful for
real-world applications.

So, what causes the overfitting problem? Let me introduce a new concept, model complexity. It refers to
how intricate or detailed a model is in terms of its structure and the number of parameters it uses. A more
complex model has more parameters or can capture more intricate patterns in the data.

Model Complexity and Overfitting

• The orange model has 5 coefficients, making it more complex and prone to overfitting. The extra
flexibility allowed by the 4th-order polynomial gives the model the ability to fit noise, leading to poor
generalization.

• The red model, with only 3 coefficients, is simpler and less likely to overfit. While it may not fit the
training data perfectly, its simpler structure helps it to better handle new observations.

Summary: This example demonstrates the classic overfitting problem: while complex models (like the
orange model) may perform well on the training data, they fail to generalize to new data. Simpler models (like
the red model) strike a better balance between fitting the data and maintaining the ability to generalize. This
highlights the importance of selecting the appropriate model complexity to ensure that the model performs
well not just on the training data, but also in real-world scenarios where new, unseen data is encountered.

3.3 5.3.3 An Analogy for Overfitting

I have had many frustrating experiences assembling IKEA furniture, and one of them is strikingly similar
to the overfitting problem in machine learning. Imagine I’m putting together a chair, trying to screw the
wooden slats into the metal frame. After tightening the first three screws, I feel like I’m almost done, but
when I try to insert the fourth screw, it doesn’t fit. I’ve tightened the first three screws so much that there’s
no room left to insert the last one.

This situation mirrors the concept of overfitting. By focusing too much on perfectly fitting the training data
(the first three screws), I leave no flexibility for new, unseen data (the last screw). The model becomes too
rigid, capturing every detail of the training data—just like I over-tightened the first screws—but fails to
adapt when it encounters new observations.

3.4 5.3.4 Variance and Bias View

A 2nd-order polynomial regression model exhibits some prediction error for the y values in the training
sample, whereas a 4th-order polynomial regression model always predicts the y values perfectly. As a result,
the 4th-order model provides highly accurate predictions, while the 2nd-order model performs slightly worse.
In statistical terms, the predictions of the 4th-order model have zero bias, whereas the 2nd-order model
exhibits some bias.

However, if we repeatedly generate five observations from the light blue model and estimate the regression
model each time, we will observe that the 2nd-order model produces very stable predictions. As shown
in the figure, all its curves remain approximately within a certain range. In contrast, the 4th-order model
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Figure 9: The Pain of Assembling IKEA Furniture: An Analogy for Overfitting

is highly unstable. In statistical terms, the 4th-order model has very high variance, while the variance of
the 2nd-order model is much smaller. Therefore, overfitting occurs when the model has low bias and high
variance. It fits the training data too closely, including noise, leading to excellent training performance but
poor generalization on unseen data. So how can we avoid the overfitting problem? We will discuss this in
the next section.
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Figure 10: Variance-Bias Tradeoff: We have five sets of data generated by the true model, represented
by the light blue dashed line, each shown in a different color. On the left-hand side (LHS), we fit a 2nd-
order polynomial regression model to each dataset, while on the right-hand side (RHS), we fit a 4th-order
polynomial regression model. As you can see, the fitted models on the LHS are very stable. However, on
the RHS, although the models perfectly pass through the observation points, they are extremely unstable.
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